
Confidential

SMART CONTRACT AUDIT REPORT

for

ElephantReserve And Stampede

Prepared By: Xiaomi Huang

PeckShield
August 28, 2022

1/20 PeckShield Audit Report #: 2022-323

contact@peckshield.com

Confidential

Document Properties

Client Elephant Money
Title Smart Contract Audit Report
Target ElephantReserve And Stampede
Version 1.0-rc
Author Xuxian Jiang
Auditors Patrick Lou, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0-rc1 August 28, 2022 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2022-323

Confidential

Contents

1 Introduction 4
1.1 About Elephant Money . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Accommodation of Non-ERC20-Compliant Tokens 11
3.2 Possible Sandwich/MEV Attacks For Reduced Returns 13
3.3 Trust Issue of Admin Keys . 15
3.4 Improved Precision By Multiplication And Division Reordering 16

4 Conclusion 18

References 19

3/20 PeckShield Audit Report #: 2022-323

Confidential

1 | Introduction

Given the opportunity to review the design document and related two smart contracts of the Elephant

Money protocol, i.e., ElephantReserve and Stampede, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About Elephant Money

The Elephant Money protocol aims to be the global decentralized community bank of its kind. By
design, it is a permissionless system for economic inclusion and helps its community accumulate
wealth through active and passive cash flows. This audit only covers to specific smart contracts, i.e.,
ElephantReserve and Stampede. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of ElephantReserve And Stampede

Item Description
Name Elephant Money

Website https://elephant.money/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report August 28, 2022

In the following, we show the given two files with the source contract for audit and the MD5/SHA
checksum values of the given files:

• File-1/2: Stampede.sol/ElephantReserve-v5.sol

• MD5-1/2: d7e7d9bc1f52c1d8170d4aa9f9ecdc6a/b107a6ab17bd1d44ede47fb421fc209e

4/20 PeckShield Audit Report #: 2022-323

Confidential

• SHA256-1: d8fb29c0d3e4d3ac8ce25a7639780e3ddb20dadd7db4556e103c3179eed1eb57

• SHA256-2: f92fbfc4eca7f05c060904f1fdce117e2d1e206f8c77c9a64905fa6cba5b9453

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract

5/20 PeckShield Audit Report #: 2022-323

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2022-323

Confidential

is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2022-323

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2022-323

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the two specific contracts
of the Elephant Money protocol, i.e., ElephantReserve and Stampede. During the first phase of our
audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 2

Informational 0

Total 4

We have so far identified a potential issue for improvement: it involves an unused import of the
Ownable smart contract, which can be safely removed without affecting the normal functionality.
More information can be found in the next subsection, and its detailed discussions can be found in
Section 3.

9/20 PeckShield Audit Report #: 2022-323

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issue (shown in Table 2.1), including 2 medium-severity
vulnerabilities and 2 low-severity vulnerabilities.

Table 2.1: Key ElephantReserve And Stampede Audit Findings

ID Severity Title Category Status
PVE-001 Low Accommodation of Non-ERC20-

Compliant Tokens
Coding Practices Resolved

PVE-002 Medium Possible Sandwich/MEV Attacks For
Reduced Returns

Time and State

PVE-003 Medium Trust Issue of Admin Keys Security Features
PVE-004 Low Improved Precision By Multiplication

And Division Reordering
Numeric Errors

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/20 PeckShield Audit Report #: 2022-323

Confidential

3 | Detailed Results

3.1 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-628 [3]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. Specifically, the transfer() routine does not have a return value defined and
implemented. However, the IERC20 interface has defined the transfer() interface with a bool return
value. As a result, the call to transfer() may expect a return value. With the lack of return value
of USDT’s transfer(), the call will be unfortunately reverted.

126 f unc t i on t r a n s f e r (address _to , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {
127 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
128 i f (f e e > maximumFee) {
129 f e e = maximumFee ;
130 }
131 u in t sendAmount = _value . sub (f e e) ;
132 ba l a n c e s [msg . sender] = ba l a n c e s [msg . sender] . sub (_value) ;
133 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;
134 i f (f e e > 0) {
135 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
136 Transfer (msg . sender , owner , f e e) ;
137 }
138 Transfer (msg . sender , _to , sendAmount) ;
139 }

Listing 3.1: USDT::transfer()

11/20 PeckShield Audit Report #: 2022-323

Confidential

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

In current implementation, if we examine the Stampede::sponsor() routine, it is designed to sponsor
the given user with the specified amount. To accommodate the specific idiosyncrasy, there is a need
to user safeTransferFrom(), instead of transferFrom() (line 597).

582 function sponsor(address _addr , uint256 _amount) external {

585 address _sender = msg.sender;

587 User memory sUser = getUser(_sender);

589 // Checks
590 require(_addr != address (0), "Can’t send to the zero address");
591 require(_addr != _sender , "Can’t send to yourself");
592 require(sUser.deposits > 0, "Sender must be active");
593 require(_amount >= minimumAmount , "Minimum deposit");

595 // Transfer TRUNK to the contract FROM SENDER //This is a sponsorship
596 require(
597 backedToken.transferFrom(
598 _sender ,
599 address(backedTreasury),
600 _amount
601),
602 "TRUNK token transfer failed"
603);

605 //We operate side effect free and just add to pending sponsorships

607 sponsorData.add(_addr , _amount);

609 emit NewSponsorship(_sender , _addr , _amount);

611 flowData.total_txs_incr ();

613 }

Listing 3.2: Stampede::sponsor()

In the meantime, we also suggest to use the safe-version of transfer()/transferFrom() in other
related routines, including Stampede::_claim_out() and ElephantReserve::redeem().

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been resolved as the team confirms the use of only ERC20-compliant

12/20 PeckShield Audit Report #: 2022-323

Confidential

tokens.

3.2 Possible Sandwich/MEV Attacks For Reduced Returns

• ID: PVE-002

• Severity: Medium

• Likelihood: Low

• Impact: Medium

• Target: ElephantReserve

• Category: Time and State [7]

• CWE subcategory: CWE-682 [4]

Description

The ElephantReserve contract has a user-facing routine, i.e., redeem(), which can be used to redeem
backed tokens for collateral. It has a rather straightforward logic in computing the intended redeemed
collateral amount after conversion and then performing the actual swap via the collateralRouter (line
1098).

1073 function redeem(uint256 backedAmount) public returns (uint collateralAmount , uint
feeAmount) {

1075 address msgSender = _msgSender ();

1077 require(mintData.ready(msgSender), "Mutable reserve calls can not be made
multiple times in a block window");

1079 require(backedAmount >= 1e18 , "Backed amount must be greater than 1 unit");

1081 //the system will naturally balance itself based on redemptions and payout the
core asset based on the

1082 require(backedToken.transferFrom(msgSender ,address(this), backedAmount), "Backed
token must be approved and available");

1084 //If we are trying to avoid burning we can use the Pancake LP to avoid redeeming
TRUNK within slippage tolerance

1085 (collateralAmount , feeAmount) = estimateRedemption(backedAmount);

1087 //If the estimate doesn’t include core we just swap

1089 uint initialBalance = collateralToken.balanceOf(msgSender);

1091 // Convert from backed to collateral using the core’s Oracle
1092 address [] memory path = new address [](2);
1093 path [0] = address(backedToken);
1094 path [1] = address(collateralToken);

1096 require(backedToken.approve(address(collateralRouter), collateralAmount));

1098 collateralRouter.swapExactTokensForTokens(

13/20 PeckShield Audit Report #: 2022-323

Confidential

1099 collateralAmount , //swap the backed amount - fees
1100 0, // accept any amount of core tokens
1101 path ,
1102 msgSender , //send to msgSender
1103 block.timestamp
1104);

1106 collateralAmount = collateralToken.balanceOf(msgSender).sub(initialBalance);

1108 // transfer fee or remaining balance to the TRUNK Treasury
1109 backedToken.transfer(address(backedTreasury), feeAmount.min(backedToken.

balanceOf(address(this))));

1111 //touch so redeem can’t be looped in a smart contract / flashloan
1112 mintData.touch(msgSender);

1114 //Fire event

1116 emit onRedemption(
1117 msgSender ,
1118 backedAmount ,
1119 collateralAmount ,
1120 feeAmount ,
1121 block.timestamp
1122);

1125 }

Listing 3.3: ElephantReserve::redeem()

To elaborate, we show above the redeem() routine. We notice the token swap is routed to
collateralRouter and the actual swap operation swapExactTokensForTokens() essentially does not spec-
ify any effective restriction 1 on possible slippage and is therefore vulnerable to possible front-running
attacks, resulting in a smaller gain for this round of yielding.

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a large
trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-back
of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a loss
and brings a smaller return as expected to the trading user because the swap rate is lowered by the
preceding sell. As a mitigation, we may consider specifying the restriction on possible slippage caused
by the trade or referencing the TWAP or time-weighted average price of UniswapV2. Nevertheless, we
need to acknowledge that this is largely inherent to current blockchain infrastructure and there is
still a need to continue the search efforts for an effective defense.

Recommendation Develop an effective mitigation to the above front-running attack to better
1The current approach of computing the expected return amount via collateralRouter.getAmountsOut(

backedAmount.sub(feeAmount), path) does not apply any slippage control at all.

14/20 PeckShield Audit Report #: 2022-323

Confidential

protect the interests of protocol users.

Status

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the two audited contracts, there is a privileged owner account that plays a critical role in govern-
ing and regulating the system-wide operations (e.g., set the various parameters, as well as related
percentage, etc). Our analysis shows that the privileged account needs to be scrutinized. In the
following, we examine the privileged account and the related privileged accesses in current contracts.

To elaborate, we show below example privileged routines from ElephantReserve. These routines
allow the owner account to set new collateralRouter contract address, set the liquidityThreshold/

liquidityFrequency/daily_apr, etc.

94 //Core collateral liquidity can move from one contract location to another across
major PCS releases

95 function updateCollateralRouter(address _router) onlyOwner public {
96 require(_router != address (0), "Router must be set");
97 collateralRouter = IUniswapV2Router02(_router);
98
99 emit UpdateCollateralRouter(_router);

100 }
101
102 //Mint data is kept across reserves so updates can happen at any time
103 function updateMintData(address mintDataAddress) onlyOwner external {
104 require(mintDataAddress != address (0), "Require valid non -zero addresses");
105
106 mintData = MintData(mintDataAddress);
107
108 emit UpdateMintData(mintDataAddress);
109 }

Listing 3.4: ElephantReserve::updateCollateralRouter()/updateMintData()

It would be worrisome if the privileged owner account is a plain EOA account. Note that a multi-sig
account could greatly alleviate this concern, though it is still far from perfect. Specifically, a better

15/20 PeckShield Audit Report #: 2022-323

Confidential

approach is to eliminate the administration key concern by transferring the role to a community-
governed DAO. In the meantime, a timelock-based mechanism can also be considered as mitigation.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status

3.4 Improved Precision By Multiplication And Division
Reordering

• ID: PVE-004

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: ElephantReserve

• Category: Numeric Errors [8]

• CWE subcategory: CWE-190 [1]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the Stampede::payoutOf() as an example. This routine is used to calculate
the current payout and max-payout of a given address.

819 f unc t i on payoutOf (address _addr) pub l i c view re tu rn s (uint256 payout , uint256
max_payout) {

821 User memory _user = ge tUse r (_addr) ;

823 //The max_payout is a function of deposits
824 max_payout = maxPayoutOf (_user . d e p o s i t s) ;

826 uint256 s ha r e ;

828 // No need for negative fee

830 i f (_user . payout s < max_payout) {

16/20 PeckShield Audit Report #: 2022-323

Confidential

831 //Using 1e18 we capture all significant digits when calculating available divs
832 s ha r e = _user . d e p o s i t s . mul (payoutRate ∗ 1e18) . d i v (100 e18) . d i v (24 hours) ; // divide

the profit by payout rate and seconds in the day
833 payout = sha r e ∗ block . timestamp . s a f eSub (_user . depos i t_t ime) ;

835 // payout remaining allowable divs if exceeds
836 i f (_user . payout s + payout > max_payout) {
837 payout = max_payout . sa f eSub (_user . payout s) ;
838 }

840 }
841 }

Listing 3.5: Stampede::payoutOf()

We notice the calculation of the resulting payout (line 833) involves mixed multiplication and
devision. For improved precision, it is better to calculate the multiplication before the division, i.e.,
payout = user.deposits.mul(payoutRate).mul(elapsed_time).div(24 hours).div(100), where uint256

elapsed_time = block.timestamp.safeSub(_user.deposit_time). Note that the resulting precision loss
may be just a small number, but it plays a critical role when certain boundary conditions are met.
And it is always the preferred choice if we can avoid the precision loss as much as possible.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status

17/20 PeckShield Audit Report #: 2022-323

Confidential

4 | Conclusion

In this audit, we have analyzed the design and implementation of two specific contracts of the
Elephant Money protocol, i.e., ElephantReserve and Stampede. The protocol itself aims to be the global
decentralized community bank of its kind. By design, it is a permissionless system for economic
inclusion and helps its community accumulate wealth through active and passive cash flows. The
current code base is well structured and neatly organized. Those identified issues are promptly
confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

18/20 PeckShield Audit Report #: 2022-323

Confidential

References

[1] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-628: Function Call with Incorrectly Specified Arguments. https://cwe.mitre.org/

data/definitions/628.html.

[4] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[8] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

19/20 PeckShield Audit Report #: 2022-323

https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Confidential

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2022-323

https://www.peckshield.com

	Introduction
	About Elephant Money
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Accommodation of Non-ERC20-Compliant Tokens
	Possible Sandwich/MEV Attacks For Reduced Returns
	Trust Issue of Admin Keys
	Improved Precision By Multiplication And Division Reordering

	Conclusion
	References

